Fullerene modification of WO<sub>3</sub> electron transport layer toward high‐efficiency MA‐free perovskite solar cells with eliminated light‐soaking effect

نویسندگان

چکیده

In perovskite solar cells (PSCs), the light-soaking effect, which means device performance changes obviously under continuous light illumination, is potentially harmful to loaded devices as well accurately assessing their efficiency. Herein, chemically stable tungsten trioxide (WO3) with high electron mobility used transport material in methylamine (MA)-free PSCs. However, effect observed apparently our devices. A fullerene derivative, C60 pyrrolidine Tris-acid (CPTA), introduced modify interface between WO3 and (PVK) layers, can bond PVK simultaneously, leading passivation of defect suppression trap-assisted nonradiative recombination. What more, introduction CPTA enhance built-in electric field thereby facilitating extraction inhibiting carrier accumulation at interface. Consequently, WO3-based PSCs has been eliminated, power conversion efficiency boosted from 17.4% for control 20.5% WO3/CPTA-based PSC enhanced stability. This study gives guidance design interfacial molecules eliminate effect.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Planar perovskite solar cells using fullerene C70 as electron selective transport layer

Owing amongst other to its high electron mobility, fullerene C70, has been widely used as an electron transporting layer in organic solar cells. In this research, we report the use of C70 thin films as electron transport layers of planar perovskite solar cells (PSCs) using a conventional device structure. The thickness of the C70 layer has been optimized to achieve the best efficiency of 12%. I...

متن کامل

Fullerene-Based Electron Transport Layers for Semi-Transparent MAPbBr3 Perovskite Films in Planar Perovskite Solar Cells

In this study, four kinds of structures—[6,6]-phenyl-C61-butyric acid methyl ester (PCBM), PCBM/fullerene (C60), C60/bathocuproine (BCP), and PCBM/C60/BCP—were used as electron transport layers, and the structure, and optical and electronic behaviors of MAPbBr3 perovskite layers after annealing treatments were observed. The experimental results indicate that PCBM/C60 bi-layer structure is accep...

متن کامل

Effect of Seed Layer on the Morphology of ‎Zinc Oxide Nanorods as an Electron ‎Transport Layer in Polymer Solar Cells ‎

   Zinc oxide has been considered as a promising semiconductor material for fabrication of transparent conductive oxides (TCOs), electronic devices, optoelectronics, and solar cells. Among the various morphologies of zinc oxide, nanorods are more widely used because of the ease of synthesis and providing a direct path for the transport of charge carriers. The electrochemical deposi...

متن کامل

Modified deposition process of electron transport layer for efficient inverted planar perovskite solar cells.

A highly-efficient inverted heterojunction perovskite solar cell was prepared. A homogeneous and compact perovskite (CH3NH3PbI3) layer was prepared via a two-step solution deposition method, and subsequently a double-layer PCBM film was deposited by a sequential spin-coating/vapor deposition process as the electron transport layer. The optimised device could achieve a 12.2% (average 11.09%) eff...

متن کامل

TiO2 Phase Junction Electron Transport Layer Boosts Efficiency of Planar Perovskite Solar Cells

In the planar perovskite solar cells (PSCs), the electron transport layer (ETL) plays a critical role in electron extraction and transport. Widely utilized TiO2 ETLs suffer from the low conductivity and high surface defect density. To address these problems, for the first time, two types of ETLs based on TiO2 phase junction are designed and fabricated distributed in the opposite space, namely a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Interdisciplinary materials

سال: 2023

ISSN: ['2767-4401', '2767-441X']

DOI: https://doi.org/10.1002/idm2.12089